
UEFI Development
UEFI Driver Model, Protocols and Apps

By Elvis M. Teixeira [elvismtt@gmail.com]

UEFI Images
● UEFI applications and drivers are compiled into images

● An UEFI image is executable (PE/COFF) code

● Images can be loaded into memory and unloaded from there (removed)

● A loaded image can be started (The entry point is called)

Drivers VS Applications
Applications

● An application is executed from the beginning of its entry point to its end

● Possibly with side effects (I/O, etc)

Drivers

● A driver exposes a service to be used asynchronously by others.

● ‘Others’ may be apps, drivers or timer events

Protocols
● Protocols are data structures that contain function pointers

● They can also have data members (e.g. version numbers)

● These pointers should point to the implementation provided by some driver

Example 1: EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

typedef struct
_EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {
 UINT64 Revision;
 EFI_VOLUME_OPEN OpenVolume;
} EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

typedef
EFI_STATUS
(EFIAPI *EFI_VOLUME_OPEN) (
 IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL * This,
 OUT EFI_FILE **Root
);

Handles
● The handle database is the most important data structure in the DXE phase

● In each handle there may be any number of protocols and images installed

● A GUID uniquely identifies a resource within a handle

● In a given handle there can be only one resource with a given GUID

The Boot Services Table
Is a set of functions that is globally accessible.

They can be used to:

● Find resources in the handle database

● Load, start and unload images

● Create and start timers

● Many other things

Header UefiBootServicesTableLib.h declares a global pointer gBS to this table

Example 2: Using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

EFI_HANDLE Handle = NULL;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *FSProtocol = NULL;
EFI_FILE_PROTOCOL *RootDir = NULL;
EFI_FILE_PROTOCOL *File = NULL;

EFI_STATUS Status = gBS->LocateHandle (
 AllHandles,
 &gEfiSimpleFileSystemProtocol,
 NULL,
 &BufferSize,
 &Handle
);

Status = gBS->OpenProtocol (
 Handle,
 &gEfiSimpleFileSystemProtocol,
 (VOID **) &FSProtocol,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

Status = FSProtocol->OpenVolume (
 FSProtocol,
 &RootDir
);

Status = RootDir->Open (
 RootDir,
 &File,
 L”FileName.txt”,
 EFI_FILE_MODE_READ,
 EFI_FILE_VALID_ATTR
);

Status = File->Read (
 File,
 &BufferSize,
 Buffer
);

Driver development
A driver that follows the “UEFI driver model” exposes an entry point,

an unload function (optional but recommended) and installs at least:

● The EFI_DRIVER_BINDING_PROTOCOL
● The EFI_SUPPORTED_EFI_VERSION_PROTOCOL
● The EFI_COMPONENT_NAME_PROTOCOL
● The EFI_COMPONENT_NAME2_PROTOCOL

Installing the
protocols

The driver’s entry point:

EFI_STATUS
EFIAPI
MyDriverEntry (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status = gBS->InstallMultipleProtocolInterfaces (
 &ImageHandle,
 &gEfiDriverSupportedEfiVersionProtocolGuid,
 &gMyDriverSupportedEfiVersion,

 &gEfiDriverBindingProtocolGuid,

 &gMyDriverDriverBinding,

 &gEfiComponentNameProtocolGuid,

 &gMyDriverComponentName,

 &gEfiComponentName2ProtocolGuid,

 &gMyDriverComponentName2,

 NULL

);

 return Status;

}

The EFI_DRIVER_BINDING_PROTOCOL
Contains 3 functions:

Supported():

● Should check if the a handle provides access to a supported device

Start():

● Should install the protocols that make the driver’s services available

Stop():

● Should undo everything Start() does

Finding supported
devices
Supported(): returns EFI_SUCCESS if
ConstrollerHandle has a reference to a
device the driver can manage.
Otherwise it returns
EFI_UNSUPPORTED.

Supported() is called for each HANDLE
in the handle database on driver
initialization, and when new devices are
attached.

EFI_STATUS
EFIAPI
MyDriverSupported (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandler,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
 EFI_STATUS Status = EFI_SUCCESS;
 BOOLEAN ThereIsADevice = FALSE;

 Status = DoesHandleContainsAnyMyDevice (
 ControllerHandle,
 &ThereIsADevice
);

 if (EFI_ERROR (Status)) {
 MaybeHandleError (Status, ControllerHandle);
 }

 if (ThereIsADevice) {
 return EFI_SUCCESS;
 }

 return EFI_UNSUPPORTED;
}

Registering driver
services
Starting drivers often include installing
IO protocols through which users can
access the driver’s services.

These protocols may be abstractions on
top of other IO protocols.

In addition to IO protocols timer events
sometimes appear.

EFI_STATUS
EFIAPI
MyDriverStart (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandler,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
 EFI_STATUS Status = EFI_SUCCESS;
 MY_IO_PROTOCOL *MyIOProtocol = NULL;

 Status = InitializeMyIOProtocol (
 &MyIOProtocol
);

 Status = gBS->InstallMultipleProtocolInterfaces (
 ControllerHandle,
 &gMyIOProtocolGuid
 MyIOProtocol,
 NULL
);

 return EFI_SUCCESS;
}

The build system
The EDK2 source tree includes a custom build system which helps with:

● Providing different implementations for the same interface (library classes)

● Generating code for common tasks and data objects e. g. GUIDS

● Creating a dependency tree for each package

The build system - platform file (.dsc)
● Each package has one

● Defines overall compilation context and lists apps and drivers in the package

● Many apps and drivers can be built by pointing the build utility to a .dsc
○ build -p SomePkg.dsc -b X64

● Maps library classes to a particular implementation

The build system - platform file (.dsc) EXAMPLE
[Defines]
 PLATFORM_NAME = Shell
 PLATFORM_GUID = E1DC9BF8-7013-4c99-9437-795DAA45F3BD
 PLATFORM_VERSION = 1.01
 DSC_SPECIFICATION = 0x00010006
 OUTPUT_DIRECTORY = Build/Shell
 SUPPORTED_ARCHITECTURES = IA32|IPF|X64|EBC|ARM|AARCH64
 BUILD_TARGETS = DEBUG|RELEASE|NOOPT
 SKUID_IDENTIFIER = DEFAULT

[LibraryClasses.common]
 UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplicationEntryPoint.inf
 !if $(TARGET) == RELEASE
 DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf
 !else
 DebugLib|MdePkg/Library/UefiDebugLibConOut/UefiDebugLibConOut.inf
 !endif

[Components]
 ShellPkg/Library/UefiShellLib/UefiShellLib.inf

The build system - “dec” file (.dec)
● Each package has one or more of these too

● Lists include directories

● Lists package GUIDS

● Lists PCD values fixed at build

The build system - “dec” file (.dec) EXAMPLE
[Defines]
 DEC_SPECIFICATION = 0x00010005
 PACKAGE_NAME = ShellPkg
 PACKAGE_GUID = C1014BB7-4092-43D4-984F-0738EB424DBF
 PACKAGE_VERSION = 1.01

[Includes]
 Include

[Guids]
 gEfiShellPkgTokenSpaceGuid = {0x171e9188, 0x31d3, 0x40f5, {0xb1, 0x0c, 0x53, 0x9b, 0x2d, 0xb9, ...
 gShellVariableGuid = {0x158def5a, 0xf656, 0x419c, {0xb0, 0x27, 0x7a, 0x31, 0x92, 0xc0, ...

[PcdsFixedAtBuild]
 gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0xFF
 gEfiShellPkgTokenSpaceGuid.PcdShellLibAutoInitialize|FALSE

The build system - “inf” file (.inf)
● One for each app or driver

● Lists the source files that make up the driver/app

● Lists the library classes needed by the driver/app

The build system - “inf” file (.inf) EXAMPLE
[Defines]
 INF_VERSION = 0x00010006
 BASE_NAME = Hello
 FILE_GUID = a912f198-7f0e-4803-b908-b757b806ec83
 MODULE_TYPE = UEFI_APPLICATION
 VERSION_STRING = 0.1
 ENTRY_POINT = ShellCEntryLib

[Sources]
 Hello.c

[Packages]
 MdePkg/MdePkg.dec
 ShellPkg/ShellPkg.dec

[LibraryClasses]
 UefiLib
 ShellCEntryLib

Review notes
● Decide whether you need an app or a driver (what the entry point does)

● Create a new .inf file with a new GUID generated by a proper tool

● Insert the app/driver’s .inf into the list of Components of a platform file

● In case you have a driver follow the driver model
○ At entry point install ComponentName, DriverBinding and SupportedEfiVersion

○ Think carefully what your Start() and Stop() functions should do

○ If it makes any sense provide an Unload() function

○ If there is a version ‘2’ of a protocol, you should implement both :(

