ADAPTIVITY IN DATABASE KERNELS

Adaptive Indexing: Self tuning access methods

Javam Machado Elvis Teixeira Paulo Amora 25 de agosto de 2017

Universidade Federal do Ceará - UFC

RECAP

- New Problems
- Adaptive vs Offline
- Database Cracking
 - Adaptive index for column stores
- Adaptive merging
 - Adaptive index for tuple based storage

Concurrency

Up to date data

No workload knowledge

Figure: The Large Hadron Collider

Fast and large data analysis strategies:

Horizontal scalability Specialized data models **Eventual consistency**

Figure: NoSQL DBMS

Scalable Comodity hardware Map Reduce **Unstructured data**

Figure: Apache Hadoop

Heterogeneous

Social

Autonomous

Figure: SETI @ Home

What about DBMS?

Offline indexes

Require decisions on what to index One step operation (CREATE INDEX, DROP INDEX) Changes in workload demand rebuild

Adaptive indexes

Physical design is tuned by incremental actions Changes occur in response to current query Changes in workload are naturally handled

Query sequence ----->

Response times are expected to decrease from the level of full scans (O(N)) to near the level of a binary search (O(log(N)))

DATABASE CRACKING

Developed for column stores (MonetDB) Partitions an attribute at each query In memory column copy and supporting AVL tree Low initialization cost

select ... where $A \ge 6$;


```
algorithm CrackInTwo(Low, High, Med)
x1 := point at position Low
x2 := point at position High
while position(x1) < position(x2) do
    if value(x1) < Med then</pre>
        x1 := point at next position
    else
        while value(x2) >= Med and
        position(x2) > position(x1) do
            x2 := point at previous position
        end while
        Exchange(x1, x2)
        x1 := point at next position
        x2 := point at previous position
    end if
end while
```


CRACKING COLUMN

```
algorithm CrackInTwo(Low, High, Med)
x1 := point at position Low
x2 := point at position High
    if value(x1) < Med then
```



```
while position(x1) < position(x2) do
if value(x1) < Med then</pre>
    x1 := point at next position
    x2 := point at previous position
```



```
if value(x1) < Med then
while value(x2) >= Med and
position(x2) > position(x1) do
    x2 := point at previous position
x2 := point at previous position
```



```
while position(x1) < position(x2) do
if value(x1) < Med then
    Exchange(x1, x2)
    x1 := point at next position
    x2 := point at previous position
```


select ... where $A \ge 6$;


```
if value(x1) < Med then
while value(x2) >= Med and
position(x2) > position(x1) do
    x2 := point at previous position
x2 := point at previous position
```


Partitions are stored in a tree structure (cracker index)

Partitions are stored in a tree structure (cracker index)

More queries - more partitions - smaller pieces scanned

More queries - more partitions - smaller pieces scanned

Database cracking - response times

Idreos et. al. 2007 - Database Cracking

A histogram for free ¹

Column partitions contain information on the distribution of the data attribute. i. e. they tell how many records lie in the given range.

¹Idreos et. al. 2007 - Database Craking

Stochastic cracking

Partition ranges are not equal to query ranges Adds a random component to cracking Eventually cracks big partitions

Holistic indexing

Idle CPU cores are used to perform cracks Select operators still perform cracks Holistic cracks are performed on the biggest partitions

ADAPTIVE MERGING

Relational systems are typically stored in disk B-tree based structures are suitable for block storage Full sorting may be prohibitive (time) And demands prior index selection (workload knowledge)

Figure: Collect run

Figure: Collect run

Figure: Sort run

Figure: Repeat for other partitions

12, 13, 15, 17, 19, 21, 24, 26, 28

Figure: Final sorted data

Structure creation

Runs become the data in the leaf level of a B+ tree A bulk load procedure is used to build the tree

Figure: Complete tree

Figure: Answering a query

Figure: Answering a query

Each query walks the tree and move the qualifying tuples to the final partition

Figure: Adaptive Merging

Figure: Short Query Ranges

Adaptive Merging - overhead per query

Grafe et. al. 2010 - Self-selecting, self-tuning incrementally optimized indexes

Adaptive Merging - overhead per query

Grafe et. al. 2010 - Self-selecting, self-tuning incrementally optimized indexes

CONCURRENCY

The problem

Updating index structures while processing queries requires concurrency control and the system may incur additional lock contention

Index structure VS index contents ²

Index logical contents do not change Index refinement is not transactional Lightweight latches instead of locks

²Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing

Locks VS Latches

LocksLatchesSeparateTransactionsThreadsProtectDB ContentIn-memory dataDuringEntire TransactionsCritical sections

Incremental granularity of locking ³

Increasingly smaller key ranges affected Conflicts can be avoided

³Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing

CONCURRENCY

Throughput

Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing

CONCURRENCY

Wait time

Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing

AI/ML guided layout optimization

Incremental physical layout tuning enables learning Current request X Workload pattern Workload forecasting (tune in anticipation)

Flexible physical design Uses workload pattern recognition Fits modern query processing needs

F. Funke et. al. - 2012. Compacting Transactional Data in Hybrid OLTP&OLAP Databases

H. Lang et. al. - 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation

I. Alagiannis et. al. - 2014. H2O: A Hands-free Adaptive Store

J. Arulraj et. al. - 2016. Bridging the Archipelago Between Row-Stores and Column-Stores for Hybrid Workloads

Graefe - 2010. Self-selecting, self-tuning, incrementally optimized indexes

Idreos - 2007. Database Cracking

