
adaptivity in database kernels
Adaptive Indexing: Self tuning access methods

Javam Machado Elvis Teixeira Paulo Amora
25 de agosto de 2017

Universidade Federal do Ceará - UFC



sumary

RECAP

New Problems

Adaptive vs Offline

Database Cracking

Adaptive index for column stores

Adaptive merging

Adaptive index for tuple based storage

Concurrency

1



recap



fast data, urgent need for insights

Up to date data

No workload knowledge

Figure: The Large Hadron Collider

3



options

Fast and large data analysis strategies:

4



not only sql?

Horizontal scalability
Specialized data models
Eventual consistency

Figure: NoSQL DBMS

5



distributed computing frameworks

Scalable
Comodity hardware
Map Reduce
Unstructured data Figure: Apache Hadoop

6



volunteer computing

Heterogeneous
Social
Autonomous Figure: SETI @ Home

7



options

What about DBMS?

8



adaptive vs offline

Offline indexes

Require decisions on what to index
One step operation (CREATE INDEX, DROP INDEX)
Changes in workload demand rebuild

9



adaptive vs offline

Adaptive indexes

Physical design is tuned by incremental actions
Changes occur in response to current query
Changes in workload are naturally handled

10



adaptive indexing changes physical layout

11



expected performance

Response times are expected to decrease from the level of full
scans (O(N)) to near the level of a binary search (O(log(N)))

12



database cracking



database cracking

Developed for column stores (MonetDB)
Partitions an attribute at each query
In memory column copy and supporting AVL tree
Low initialization cost

14



cracking column

15



cracking algorithms

Idreos et. al. 2007 - Database Craking

16



cracking column

Idreos et. al. 2007 - Database Craking

17



cracking column

18



cracking column

Idreos et. al. 2007 - Database Craking

19



cracking column

20



cracking column

21



cracking column

Idreos et. al. 2007 - Database Craking

22



cracking column

23



cracking column

Idreos et. al. 2007 - Database Craking

24



cracking column

25



cracking column

26



cracking column

27



cracking column

Idreos et. al. 2007 - Database Craking

28



cracking column

29



cracking column

30



cracking column

31



cracking index

Partitions are stored in a tree structure (cracker index)

32



cracking index

Partitions are stored in a tree structure (cracker index)

33



cracking index

More queries - more partitions - smaller pieces scanned

34



cracking index

More queries - more partitions - smaller pieces scanned

35



results

Database cracking - response times

Idreos et. al. 2007 - Database Cracking

36



caveat

A histogram for free 1

Column partitions contain information on the distribution of
the data attribute. i. e. they tell how many records lie in the
given range.

1Idreos et. al. 2007 - Database Craking
37



variants

Stochastic cracking

Partition ranges are not equal to query ranges
Adds a random component to cracking
Eventually cracks big partitions

Holistic indexing

Idle CPU cores are used to perform cracks
Select operators still perform cracks
Holistic cracks are performed on the biggest partitions

38



adaptive merging



block storage

Relational systems are typically stored in disk
B-tree based structures are suitable for block storage
Full sorting may be prohibitive (time)
And demands prior index selection (workload knowledge)

40



partitioned b trees

41



partitioned b trees

Figure: Collect run

42



partitioned b trees

Figure: Collect run

43



partitioned b trees

Figure: Sort run

44



partitioned b trees

Figure: Add partition key

45



partitioned b trees

Figure: Repeat for other partitions

46



partitioned b trees

Figure: Final sorted data

47



partitioned b trees

Structure creation

Runs become the data in the leaf level of a B+ tree
A bulk load procedure is used to build the tree

48



partitioned b trees

Figure: Complete tree

49



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

50



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

51



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

52



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

53



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

54



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

55



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

56



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

57



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

58



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

59



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

60



partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query

61



merge selections

Each query walks the tree and move the qualifying tuples to
the final partition

62



merge selections

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Adaptive Merging

63



merge selections

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Short Query Ranges

64



results

Adaptive Merging - overhead per query

Figure: Short Query Ranges

Grafe et. al. 2010 - Self-selecting, self-tuning incrementally optimized indexes

65



results

Adaptive Merging - overhead per query

Figure: Long Query Ranges

Grafe et. al. 2010 - Self-selecting, self-tuning incrementally optimized indexes

66



concurrency



concurrency

The problem

Updating index structures while processing queries requires
concurrency control and the system may incur additional lock
contention

68



concurrency

Index structure VS index contents 2

Index logical contents do not change
Index refinement is not transactional
Lightweight latches instead of locks

2Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing
69



concurrency

Locks VS Latches

Locks Latches
Separate Transactions Threads
Protect DB Content In-memory data
During Entire Transactions Critical sections

70



concurrency

Incremental granularity of locking 3

Increasingly smaller key ranges affected
Conflicts can be avoided

3Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing
71



concurrency

Throughput

Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing

72



concurrency

Wait time

Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing

73



beyond adaptivity

AI/ML guided layout optimization

Incremental physical layout tuning enables learning
Current request X Workload pattern
Workload forecasting (tune in anticipation)

74



conclusion

Flexible physical design
Uses workload pattern recognition
Fits modern query processing needs

75



bibliography

F. Funke et. al. - 2012. Compacting Transactional Data in Hybrid
OLTP&OLAP Databases
H. Lang et. al. - 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation
I. Alagiannis et. al. - 2014. H2O: A Hands-free Adaptive Store
J. Arulraj et. al. - 2016. Bridging the Archipelago Between Row-Stores
and Column-Stores for Hybrid Workloads
Graefe - 2010. Self-selecting, self-tuning, incrementally optimized
indexes
Idreos - 2007. Database Cracking

76



Questions?

77


	RECAP
	New Problems
	Adaptive vs Offline

	Database Cracking
	Adaptive index for column stores

	Adaptive merging
	Adaptive index for tuple based storage

	Concurrency

