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recap



fast data, urgent need for insights

Up to date data

No workload knowledge

Figure: The Large Hadron Collider
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options

Fast and large data analysis strategies:
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not only sql?

Horizontal scalability
Specialized data models
Eventual consistency

Figure: NoSQL DBMS
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distributed computing frameworks

Scalable
Comodity hardware
Map Reduce
Unstructured data Figure: Apache Hadoop
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volunteer computing

Heterogeneous
Social
Autonomous Figure: SETI @ Home
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options

What about DBMS?

8



adaptive vs offline

Offline indexes

Require decisions on what to index
One step operation (CREATE INDEX, DROP INDEX)
Changes in workload demand rebuild
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adaptive vs offline

Adaptive indexes

Physical design is tuned by incremental actions
Changes occur in response to current query
Changes in workload are naturally handled
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adaptive indexing changes physical layout
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expected performance

Response times are expected to decrease from the level of full
scans (O(N)) to near the level of a binary search (O(log(N)))
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database cracking



database cracking

Developed for column stores (MonetDB)
Partitions an attribute at each query
In memory column copy and supporting AVL tree
Low initialization cost
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cracking column
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cracking algorithms

Idreos et. al. 2007 - Database Craking
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cracking column

Idreos et. al. 2007 - Database Craking
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Idreos et. al. 2007 - Database Craking
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Idreos et. al. 2007 - Database Craking
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Idreos et. al. 2007 - Database Craking
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cracking column

Idreos et. al. 2007 - Database Craking
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cracking column
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cracking column
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cracking column
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cracking index

Partitions are stored in a tree structure (cracker index)
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cracking index

Partitions are stored in a tree structure (cracker index)
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cracking index

More queries - more partitions - smaller pieces scanned
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cracking index

More queries - more partitions - smaller pieces scanned
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results

Database cracking - response times

Idreos et. al. 2007 - Database Cracking
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caveat

A histogram for free 1

Column partitions contain information on the distribution of
the data attribute. i. e. they tell how many records lie in the
given range.

1Idreos et. al. 2007 - Database Craking
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variants

Stochastic cracking

Partition ranges are not equal to query ranges
Adds a random component to cracking
Eventually cracks big partitions

Holistic indexing

Idle CPU cores are used to perform cracks
Select operators still perform cracks
Holistic cracks are performed on the biggest partitions
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adaptive merging



block storage

Relational systems are typically stored in disk
B-tree based structures are suitable for block storage
Full sorting may be prohibitive (time)
And demands prior index selection (workload knowledge)
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partitioned b trees
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partitioned b trees

Figure: Collect run
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partitioned b trees

Figure: Collect run
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partitioned b trees

Figure: Sort run
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partitioned b trees

Figure: Add partition key
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partitioned b trees

Figure: Repeat for other partitions
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partitioned b trees

Figure: Final sorted data
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partitioned b trees

Structure creation

Runs become the data in the leaf level of a B+ tree
A bulk load procedure is used to build the tree
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partitioned b trees

Figure: Complete tree
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partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query
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partitioned b trees

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Answering a query
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merge selections

Each query walks the tree and move the qualifying tuples to
the final partition
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merge selections

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Adaptive Merging
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merge selections

SELECT * FROM t WHERE t.A > 5 AND t.A <= 7;

Figure: Short Query Ranges
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results

Adaptive Merging - overhead per query

Figure: Short Query Ranges

Grafe et. al. 2010 - Self-selecting, self-tuning incrementally optimized indexes
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results

Adaptive Merging - overhead per query

Figure: Long Query Ranges

Grafe et. al. 2010 - Self-selecting, self-tuning incrementally optimized indexes

66



concurrency



concurrency

The problem

Updating index structures while processing queries requires
concurrency control and the system may incur additional lock
contention
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concurrency

Index structure VS index contents 2

Index logical contents do not change
Index refinement is not transactional
Lightweight latches instead of locks

2Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing
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concurrency

Locks VS Latches

Locks Latches
Separate Transactions Threads
Protect DB Content In-memory data
During Entire Transactions Critical sections
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concurrency

Incremental granularity of locking 3

Increasingly smaller key ranges affected
Conflicts can be avoided

3Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing
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concurrency

Throughput

Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing
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concurrency

Wait time

Graefe et. al. 2012 - Concurrency Control for Adaptive Indexing
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beyond adaptivity

AI/ML guided layout optimization

Incremental physical layout tuning enables learning
Current request X Workload pattern
Workload forecasting (tune in anticipation)
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conclusion

Flexible physical design
Uses workload pattern recognition
Fits modern query processing needs
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Questions?
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